Math 115 Fall 2017 Lecture 19
use special product $(A+B)^{2}=A^{2}+2 A B+B^{2}$ $t c$ find

$$
\begin{aligned}
\left(2 x^{3}+5\right)^{2} & =\left(2 x^{3}\right)^{2}+2\left(2 x^{3}\right)(5)+(5)^{2} \\
& =4 x^{6}+20 x^{3}+25
\end{aligned}
$$

Trinomial , $D=6$, LC. $=4$

$$
\begin{aligned}
& \left(3 x^{5}+y^{4}\right)^{2}=\left(3 x^{5}\right)^{2}+2\left(3 x^{5}\right)\left(y^{4}\right)+\left(y^{4}\right)^{2} \\
& \text { Trinomial } \\
& \begin{array}{c}
\text { Constant }=25 \text {, L.C. }=9 \\
\text { No const. }
\end{array}=9 x^{10}+6 x^{5} y^{4}+y^{8}
\end{aligned}
$$

use special product $(A-B)^{2}=A^{2}-2 A B+B^{2}$ to find $\left(x^{8}-3 x^{5}\right)^{2}$

$$
\begin{aligned}
& =\left(x^{8}\right)^{2}-2\left(x^{8}\right)\left(3 x^{5}\right)+\left(3 x^{5}\right)^{2} \\
& =x^{16}-6 x^{8} x^{5}+9 x^{10}
\end{aligned}
$$

$$
=x^{16}-6 x^{13}+9 x^{10} \begin{gathered}
\text { Trinomial } \\
D=16 \\
1
\end{gathered}
$$

$$
\text { LC. }=1
$$

No Constant

$$
\begin{aligned}
&\left(5 x^{10}-6 y^{5}\right)^{2}=\left(5 x^{10}\right)^{2}-2\left(5 x^{10}\right)\left(6 y^{5}\right)+\left(6 y^{5}\right)^{2} \\
&=25 x^{20}-60 x^{10} y^{5}+36 y^{10} \\
& \text { Trinomial, } D=20, L C=25 \text {, No } \\
&\left(4 x^{3} y^{2}-7\right)^{2}=\left(4 x^{3} y^{2}\right)^{2}-2\left(4 x^{3} y^{2}\right)(7)+(7)^{2} \\
&=16 x^{6} y^{4}-56 x^{3} y^{2}+49
\end{aligned}
$$

Trinomial, $D=10, L C=16$, Const $=49$.
use special product $(\underbrace{A+B)(A-B)})=A^{2}-B^{2}$ to find Conjugates

$$
\begin{aligned}
\left(9 x^{6}+5\right)\left(9 x^{6}-5\right) & =\left(9 x^{6}\right)^{2}-(5)^{2} \\
& =81 x^{12}-25
\end{aligned}
$$

$$
\begin{aligned}
& \text { Binomial } \quad D=12, \text { L.C. }=81 \\
& \hline\left(12 x^{8}-7 y^{3}\right)\left(12 x^{8}+7 y^{3}\right) \quad \text { Const_ }= \\
& -25
\end{aligned}
$$

Simplify

$$
\begin{aligned}
& x^{\frac{2}{5}} \cdot x^{\frac{1}{4}}=x^{\frac{2}{5}+\frac{1}{4}}=x^{\frac{13}{20}} \\
& \frac{x^{\frac{5}{7}}}{x^{\frac{1}{3}}}=x^{\frac{5}{7}-\frac{1}{3}}=x^{\frac{8}{21}} \\
& \left(x^{\frac{3}{5}}\right)^{\frac{5}{8}}=x^{\frac{3}{5} \cdot \frac{5}{8}}=x^{\frac{3}{8}}
\end{aligned}
$$

Reduce

$$
\begin{aligned}
& \frac{\left(5 x^{3}\right)^{3}}{10 x^{4}}=\frac{5^{3} x^{9}}{10 x^{4}}=\frac{125 x^{9}}{105 x^{4}}=\frac{25}{2} x^{5} \\
& \frac{\left(4 x^{4} y^{6}\right)^{3}}{\left(-8 x^{5} y\right)^{2}}=\frac{64 x^{12} y^{18}}{644 x^{10} y^{2}}=x^{12-10} y^{18-2} \\
&=x^{2} y^{16} \\
& \text { Monomial) } \\
& D=2+16=18 \quad C=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Simplify } \frac{\frac{4}{45} x^{3} y^{10}}{\frac{30}{2} x^{8} y^{2}}=\frac{3 y^{8}}{2^{5} x^{5}} \\
& x^{3-8}=x^{-5}+y^{10-2}=y^{8} \\
& \left(\begin{array}{l}
\left.8.4 \times 10^{17}\right) \cdot\left(4.5 \times 10^{22}\right) \\
=37.8 \times 10^{39}=3.78 \times 10^{1} \times 10^{39} \\
4
\end{array}=3.78 \times 10^{40}\right.
\end{aligned}
$$

Simplify

$$
\frac{7.5 \times 10^{-18}}{3 \times 10^{12}}=2.5 \times 10^{-18-12}
$$

$$
\begin{aligned}
\frac{3 \times 10}{\frac{2.1 \times 10^{24}}{8.4 \times 10^{-16}}} & =2.5 \times 10^{-30} \\
& =.25 \times 10^{24-(-16)} \\
& =.25 \times 10^{40} \\
& =2.5 \times 10^{-1} \times 10^{40}=2.5 \times 10^{39}
\end{aligned}
$$

$\frac{24 x^{6}-36 x^{4}+12 x^{3}}{6 x^{3} 4} \quad$| Division by |
| :--- |
| monomial |

$=\frac{24 x^{6}}{6 x^{3}}-\frac{36 x^{4}}{6 x^{3}}+\frac{12 x^{3}}{6 x^{3}}$ Now Reduce
$=4 x^{3}-6 x+2$

$$
\begin{aligned}
& \text { Divide: } \frac{50 x^{6} y^{7}-40 x^{3} y^{10}+30 x^{2} y^{4}}{-5 x^{3} y^{6}} \\
& =\frac{50 x^{6} y^{7}}{-5 x^{3} y^{6}}-\frac{40 x^{3} y^{10}}{-5 x^{3} y^{6}}+\frac{30 x^{2} y^{4}}{-5 x^{3} y^{6}} \\
& =-10 x^{3} y+8 y^{4}-\frac{6}{x y^{2}}
\end{aligned}
$$

Not a Polynomial, why not?

Divide by long division

$$
\begin{aligned}
& \frac { 2 x ^ { 3 } - 5 x ^ { 2 } + 4 x - 1 } { x - 1 } \quad x - 1 \longdiv { 2 x ^ { 2 } - 3 x + 1 } \\
& x 2 x^{2}=2 x^{3} \\
& x-3 x=-3 x^{2} \\
& x=1=x \\
& \begin{array}{r}
\frac{-\left(2 x^{3}-2 x^{2}\right)}{-3 x^{2}+4 x-1} \\
\frac{-\left(-3 x^{2}+3 x\right)}{x-1}
\end{array} \\
& 2 x^{2}-3 x+1
\end{aligned}
$$

find an equation for the problem given below in simplest form:

$$
\frac{x \quad A=35}{2 x-3}
$$

$$
\begin{gathered}
A=L W \\
x(2 x-3)=35 \\
2 x^{2}-3 x=35 \\
2 x^{2}-3 x-35=0
\end{gathered}
$$

The length of a rectangle is 4 inches longer than 3 times its width.

1) Draw $\dot{\varepsilon}$ label

2) find expression in Simplest form for
a) its area
b) its Perimeter

$$
\begin{aligned}
A & =L W \\
& =(3 x+4) x \\
A & =3 x^{2}+4 x
\end{aligned}
$$

$$
P=2 L+2 W
$$

$$
=2(3 x+4)+2(x)
$$

$$
P=8 x+8
$$

Divide: $\frac{6 x^{2}+10 x-5}{3 x-1}$

$$
\begin{aligned}
& 3 x - 1 \longdiv { 6 x ^ { 2 } + 1 0 x - 5 } \\
& 3 x-2 x=6 x^{2}-\frac{\left(6 x^{2}-2 x-1\right)}{12 x-5} \\
& 3 x 4=12 x \\
& -\frac{(12 x-4)}{\longrightarrow-1} \\
& 2 x+4+\frac{-1}{3 x-1} \\
& \text { Rem. } \longrightarrow-1
\end{aligned}
$$

Divide: $\frac{4 x^{2}+7+8 x^{3}}{2 x+3}$

$$
\begin{aligned}
& \frac{2 x^{4}-x^{3}+3 x^{2}-8 x+7}{x^{2}+1} \\
& x ^ { 2 } + 1 \longdiv { 2 x ^ { 4 } - x ^ { 3 } + 3 x ^ { 2 } - 8 x + 7 } \\
& x^{2} 2 x^{2}=2 x^{4} \\
& -2 x^{4} \\
& x^{2}-x=-x^{3} \\
& x^{2}-1=x^{2} \\
& 2 x^{2}-x+1+\frac{7 x+66}{x^{2}+1}
\end{aligned}
$$

$$
\begin{gathered}
\text { Divide } \begin{array}{c}
\frac{6 x^{2}+20-20 x}{3 x-1} \\
3 x \square=6 x^{2} \begin{array}{r}
3 x-1 \sqrt{6 x^{2}-20 x+20} \\
3 x \square \\
3 x-18 x
\end{array} \frac{-\left(6 x^{2}-2 x\right.}{-18 x+20} \\
2 x-6+\frac{-18 x+6)}{3 x-1}
\end{array}
\end{gathered}
$$

Class QZ:

1) Simplify: $\left(x^{5}\right)^{3} \cdot x^{10}$
2) Simplify: $\frac{x^{12} y^{3}}{x^{20} y^{-2}}$ SG 13
3) Multiply: $(5 x-3)(4 x-2)$
